Сравнение прогностических моделей, построенных с помощью разных методов машинного обучения, на примере прогнозирования результатов лечения бесплодия методом вспомогательных репродуктивных технологий

Драпкина Ю.С., Макарова Н.П., Васильев Р.А., Амелин В.В., Калинина Е.А.

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России, Москва, Россия

В репродуктивной медицине развитие машинного обучения (МО) привело к созданию большого количества вспомогательных программных продуктов. Прогнозирование результативности программы вспомогательных репродуктивных технологий (ВРТ) при помощи МО может быть осуществлено с использованием различных алгоритмов в зависимости от типа данных и поставленной задачи.
Цель: Сравнение прогностической способности логистической регрессии, алгоритма решающего дерева и Random Forest в отношении вероятности наступления беременности на основании клинико-анам­нестических и эмбриологических данных пациентов в программе ВРТ.
Материалы и методы: В ретроспективное исследование были включены 854 супружеские пары. В исследовании были проанализированы клинико-лабораторные данные и параметры стимулированного цикла в зависимости от результативности программы ВРТ при помощи трех алгоритмов МО: логистической регрессии, решающего дерева и Random Forest.
Результаты: Наиболее точным алгоритмом прогнозирования частоты наступления беременности в программе ВРТ стала модель на основе Random Forest, которая определила значимость следующих  предикторов: остановка эмбрионов в развитии, триггер финального созревания ооцитов, количество эмбрионов отличного и среднего качества, продолжительность стимуляции, фактор бесплодия, индекс массы тела, уровни ФСГ и АМГ;  а также подтвердила значимость предикторов, которые были определены на предыдущих этапах работы, при помощи алгоритма решающего дерева: наличие/отсутствие беременностей в анамнезе, параметры стимулированного цикла (число ооцитов MII), показатели спермограммы в день пункции, количество эмбрионов отличного и хорошего качества, а также качество эмбриона согласно морфологическим критериям оценки.
Заключение: Для улучшения прогнозирования эффективности программы ВРТ требуются более качественные математические модели с интегральным подходом к решению задачи с использованием большой выборки пациентов с различными входными данными, представленными в сбалансированном объеме, а также дополнительные маркеры, определяющие эффективность программы ВРТ, позволяющие улучшить точность программного продукта.  

Вклад авторов: Драпкина Ю.С., Макарова Н.П., Калинина Е.А. – концепция и дизайн исследования; Драпкина Ю.С. – сбор и обработка материала; Амелин В.В., Васильев Р.А. – статистическая обработка данных; Драпкина Ю.С., Амелин В.В., Васильев Р.А. – написание текста статьи; Калинина Е.А., Макарова Н.П. – редактирование.
Конфликт интересов: Авторы заявляют об отсутствии возможных конфликтов интересов.
Финансирование: Работа проведена без привлечения дополнительного финансирования со стороны третьих лиц.
Одобрение Этического комитета: Исследование было одобрено локальным Этическим комитетом ФГБУ «НМИЦ АГП им. академика В.И. Кулакова» Минздрава России.
Согласие пациентов на публикацию: Пациенты подписали информированное согласие на публикацию своих данных.
Обмен исследовательскими данными: Данные, подтверждающие выводы этого исследования, доступны по запросу у автора, ответственного за переписку, после одобрения ведущим исследователем.
Для цитирования: Драпкина Ю.С., Макарова Н.П., Васильев Р.А., Амелин В.В., Калинина Е.А. Сравнение прогностических моделей, построенных с помощью разных методов машинного обучения, на примере прогнозирования результатов лечения бесплодия методом вспомогательных репродуктивных технологий.
Акушерство и гинекология. 2024; 2: 97-105
https://dx.doi.org/10.18565/aig.2023.263

Ключевые слова

искусственный интеллект
вспомогательные репродуктивные технологии (ВРТ)
репродуктивная медицина
машинное обучение
система поддержки принятия решений
случайный лес (Random Forest)
эффективность ВРТ
частота наступления беременности

Список литературы

  1. Ившин А.А., Багаудин Т.З., Гусев А.В. Искусственный интеллект на страже репродуктивного здоровья. Акушерство и гинекология. 2021; 5: 17-24.
  2. Драпкина Ю.С., Калинина Е.А., Макарова Н.П., Мильчаков К.С., Франкевич В.Е. Искусственный интеллект в репродуктивной медицине: этические и клинические аспекты. Акушерство и гинекология. 2022; 11: 37-44.
  3. Акжолов Р.К. Машинное обучение. Вестник науки. 2019; 3(6): 348-51.
  4. Хохлов А.Л., Белоусов Д.Ю. Этические аспекты применения программного обеспечения с технологией искусственного интеллекта. Качественная клиническая практика. 2021; 1: 70-84.
  5. Сахибгареева М.В., Заозерский А.Ю. Разработка системы прогнозирования диагнозов заболеваний на основе искусственного интеллекта. Вестник РГМУ. 2017; 6: 42-6.
  6. Кобякова О.С., Стародубов В.И., Кадыров Ф.Н., Обухова О.В., Ендовицкая Ю.В., Базарова И.Н., Чилилов А.М. Новая система договоров в рамках ОМС. Менеджер здравоохранения. 2021; 4: 76-82.
  7. Barnett-Itzhaki Z., Elbaz M., Butterman R., Amar D., Amitay M., Racowsky C. et al. Machine learning vs. classic statistics for the prediction of IVF outcomes. J. Assist. Reprod. Genet. 2020; 37(10): 2405-12. https://dx.doi.org/10.1007/s10815-020-01908-1.
  8. Wang Q.Q., Yu S.C., Qi X., Hu Y.H., Zheng W.J., Shi J.X., Yao H.Y. Overview of logistic regression model analysis and application. Zhonghua Yu Fang Yi Xue Za Zhi. 2019; 53(9): 955-60. https://dx.doi.org/10.3760/cma.j.issn.0253-9624.2019.09.018.
  9. Uddin S., Khan A., Hossain M.E., Moni M.A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 2019; 19(1): 281. https://dx.doi.org/10.1186/s12911-019-1004-8.
  10. Jaworski M., Duda P., Rutkowski L., Jaworski M., Duda P., Rutkowski L. et al. New splitting criteria for decision trees in stationary data streams. IEEE Trans. Neural Netw. Learn. Syst. 2018; 29(6): 2516-29.
  11. Hu J., Szymczak S. A review on longitudinal data analysis with random forest. Brief. Bioinform. 2023; 24(2): bbad002. https://dx.doi.org/10.1093/bib/bbad002.
  12. Драпкина Ю.С., Макарова Н.П., Татаурова П.Д., Калинина Е.A. Поддержка врачебных решений с помощью глубокого машинного обучения при лечении бесплодия методами вспомогательных репродуктивных технологий. Медицинский cовет. 2023; 15: 27-37.
  13. Shen C., Wang Q., Priebe C.E. One-hot graph encoder embedding. IEEE Trans. Pattern Anal. Mach. Intell. 2023; 45(6): 7933-8. https://dx.doi.org/10.1109/TPAMI.2022.3225073.
  14. Гусев А.В. Перспективы нейронных сетей и глубокого машинного обучения в создании решений для здравоохранения. Врач и информационные технологии. 2017; 3: 92-105.
  15. Nayarisseri A., Khandelwal R., Tanwar P., Madhavi M., Sharma D., Thakur G. et al. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Curr. Drug Targets. 2021; 22(6): 631-55. https://dx.doi.org/10.2174/1389450122999210104205732.
  16. Wang C.W., Kuo C.Y., Chen C.H., Hsieh Y.H., Su E.C.Y. Predicting clinical pregnancy using clinical features and machine learning algorithms in in vitro fertilization. PloS One. 2022; 17(6): e0267554. https://dx.doi.org/10.1371/journal.pone.0267554.
  17. Vaegter K.K., Lakic T.G., Olovsson M., Berglund L., Brodin T., Holte J. Which factors are most predictive for live birth after in vitro fertilization and intracytoplasmic sperm injection (IVF/ICSI) treatments? Analysis of 100 prospectively recorded variables in 8,400 IVF/ICSI single-embryo transfers. Fertil. Steril. 2017; 107(3): 641-648.e2. https://dx.doi.org/10.1016/j.fertnstert.2016.12.005.
  18. Tarín J.J., Pascual E., García-Pérez M.A., Gómez R., Hidalgo-Mora J.J., Cano A. A predictive model for women's assisted fecundity before starting the first IVF/ICSI treatment cycle. J. Assist. Reprod. Genet. 2020; 37(1): 171-80. https://dx.doi.org/10.1007/s10815-019-01642-3.
  19. Yang H., Liu F., Ma Y., Di M. Clinical pregnancy outcomes prediction in vitro fertilization women based on random forest prediction model: A nested case-control study. Medicine (Baltimore). 2022; 101(49): e32232. https://dx.doi.org/10.1097/MD.0000000000032232.
  20. Zmuidinaite R., Sharara F.I., Iles R.K. Current advancements in noninvasive profiling of the Embryo Culture Media Secretome. Int. J. Mol. Sci. 2021; 22(5): 2513. https://dx.doi.org/10.3390/ijms22052513.
  21. Долудин Ю.В., Драпкина Ю.С., Сазонкина П.О. Киселев А.Р., Горбунов К.С. Виртуальная система хранения биологических образцов и ассоциированных данных. Свидетельство о государственной регистрации программы для ЭВМ. Номер свидетельства: RU 2023610092. Патентное ведомство: Россия. Год публикации: 2023. Номер заявки: 2022686282. Дата регистрации: 19.12.2022.

Поступила 14.11.2023

Принята в печать 10.01.2024

Об авторах / Для корреспонденции

Драпкина Юлия Сергеевна, к.м.н., н.с. отделения вспомогательных технологий в лечении бесплодия им. профессора Б.В. Леонова, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова МЗ РФ,
117997, Россия, Москва, ул. Академика Опарина, д. 4, yu_drapkina@oparina4.ru, https://orcid.org/0000-0002-0545-1607
Макарова Наталья Петровна, д.б.н., в.н.с. отделения вспомогательных технологий в лечении бесплодия им. профессора Б.В. Леонова, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова МЗ РФ, 117997, Россия, Москва, ул. Академика Опарина, д. 4, np_makarova@oparina4.ru, https://orcid.org/0000-0003-8922-2878
Васильев Роберт Андреевич, руководитель Лаборатории прикладного Искусственного Интеллекта Z-union, вице-президент Ассоциации Лабораторий по Развитию Искусственного Интеллекта, аспирант Московского физико-технического института (МФТИ), магистр кафедры прикладной физики и математики МФТИ, магистр экономики (РАНХиГС при Президенте РФ), бакалавр Национального Исследовательского Университета «Московский институт электронной техники»
Амелин Владислав Владимирович, технический директор Лаборатории прикладного Искусственного Интеллекта Z-union, эксперт по машинному обучению, магистр Московского Государственного Университета (факультет вычислительной математики и кибернетики, кафедра математических методов прогнозирования), бакалавр Национального Исследовательского Университета «Московский институт электронной техники».
Калинина Елена Анатольевна, д.м.н., профессор, заведующая отделением вспомогательных технологий в лечении бесплодия им. профессора Б.В. Леонова, Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова МЗ РФ,
117997, Россия, Москва, ул. Академика Опарина, д. 4, e_kalinina@oparina4.ru, https://orcid.org/0000-0002-8922-2878

Также по теме

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.