Использование транскриптомных баз данных для анализа патогенетических факторов эндометриоза
Актуальность. Молекулярные механизмы патогенеза эндометриоза остаются недостаточно изученными, что во многом определяет отсутствие высокоэффективной терапии данного заболевания. В последнее время применение «омиксных» технологий в исследовании эндометриоза приводит к накоплению информации об изменении количества и состава различных классов молекул в нормальных и патологически измененных тканях.Бобров М.Ю., Балашов И.С., Филиппова Е.С., Альмова И.К., Хилькевич Е.Г., Павлович С.В., Наумов В.А., Боровиков П.И., Сухих Г.Т.
Цель исследования. Провести анализ массивов данных, полученных в разных исследованиях.
Материал и методы. Был проведен анализ шести наборов данных по экспрессии мРНК и девяти наборов по экспрессии микроРНК в эутопическом и эктопическом эндометрии. Было отобрано 79 генов с однонаправленным изменением экспрессии в большинстве наборов, и была проведена их функциональная характеристика.
Результаты. Сопоставление списков дифференциально экспрессированных генов и микроРНК, а также оценка их возможных взаимодействий позволили выявить девять микроРНК, способных участвовать в регуляции экспрессии десяти генов. Анализ процессов, регулируемых дифференциально экспрессирующимися генами, позволил выявить ряд клеточных функций и путей внутриклеточной сигнализации, которые ранее не были показаны при эндометриозе.
Заключение. Нарушения регуляции, ассоциированные с данными путями, могут вносить существенный вклад в развитие данного заболевания.
Ключевые слова
Список литературы
1. Tosti C. et al. Pathogenetic mechanisms of deep infiltrating endometriosis. Reprod. Sci. 2015; 22(9): 1053-9.
2. Signorile P.G., Baldi A. New evidence in endometriosis. Int. J. Biochem. Cell Biol. 2015; 60: 19-22.
3. Harada T., ed. Endometriosis. Springer; 2014. 475p.
4. Burney R.O. et al. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007; 148(8): 3814-26.
5. Crispi S. et al. Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects. J. Cell. Physiol. 2013; 228(9):1927-34.
6. Sha G. et al. Differentially expressed genes in human endometrial endothelial cells derived from eutopic endometrium of patients with endometriosis compared with those from patients without endometriosis. Hum. Reprod. 2007; 22(12): 3159-69.
7. Hawkins S.M. et al. Functional microRNA involved in endometriosis. Mol. Endocrinol. 2011; 25(5): 821-32.
8. Eyster K.M. et al. Whole genome deoxyribonucleic acid microarray analysis of gene expression in ectopic versus eutopic endometrium. Fertil. Steril. 2007; 88(6): 1505-33.
9. Hever A. et al. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc. Natl. Acad. Sci. USA. 2007; 104(30): 12451-6.
10. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2): 281-97.
11. Ohlsson Teague E.M.C. et al. MicroRNA-regulated pathways associated with endometriosis. Mol. Endocrinol. 2009; 23(2): 265-75.
12. Filigheddu N. et al. Differential expression of micrornas between eutopic and ectopic endometrium in ovarian endometriosis. J. Biomed. Biotechnol. 2010; 2010: 369549.
13. Braza-Boils A. et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum. Reprod. 2014; 29(5): 978-88.
14. Zhao M. et al. miR-20a contributes to endometriosis by regulating NTN4 expression. Mol. Biol. Rep. 2014; 41(9): 5793-7.
15. Zheng B. et al. The differential expression of microRNA-143,145 in endometriosis. Iran. J. Reprod. Med. 2014; 12(8): 555-60.
16. Graham A., Falcone T., Nothnick W.B. The expression of microRNA-451 in human endometriotic lesions is inversely related to that of macrophage migration inhibitory factor (MIF) and regulates MIF expression and modulation of epithelial cell survival. Hum. Reprod. 2015; 30(3): 642-52.
17. Liu S. et al. Expression of miR-126 and Crk in endometriosis: miR-126 may affect the progression of endometriosis by regulating Crk expression. Arch. Gynecol. Obstet. 2012; 285(4): 1065-72.
18. Saare M. et al. High-throughput sequencing approach uncovers the miRNome of peritoneal endometriotic lesions and adjacent healthy tissues. PLoS One. 2014; 9(11): e112630.
19. Demšar J. et al. Orange: data mining toolbox in python. J. Mach. Learn. Res. 2013; 14: 2349-53.
20. Shannon P. et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498-504.
21. Winterhalter C., Widera P., Krasnogor N. JEPETTO: a Cytoscape plugin for gene set enrichment and topological analysis based on interaction networks. Bioinformatics. 2014; 30(7): 1029-30.
22. Dweep H., Gretz N., Sticht C. miRWalk database for miRNA-target interactions. Methods Mol. Biol. 2014; 1182: 289-305.
23. Gómez-Contreras P. et al. Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases. Clin. Exp. Metastasis. 2017; 34(1): 37-49.
24. Phesse T., Flanagan D., Vincan E. Frizzled7: a promising achilles’ heel for targeting the wnt receptor complex to treat cancer. Cancers (Basel). 2016;8(5): 50.
25. Henau O. De et al. Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2. PLoS One. 2016; 11(10): e0164179.
26. Bathgate R.A.D. et al. Relaxin family peptides and their receptors. Physiol. Rev. 2013; 93(1): 405-80.
27. Boggild S. et al. Spatiotemporal patterns of sortilin and SorCS2 localization during organ development. BMC Cell Biol. 2016; 17: 8.
28. Ortiga-Carvalho T.M., Sidhaye A.R., Wondisford F.E. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat. Rev. Endocrinol. 2014; 10(10): 582-91.
29. Ramaiah S. et al. Toll-like receptor and accessory molecule mRNA expression in humans and mice as well as in murine autoimmunity, transient inflammation, and progressive fibrosis. Int. J. Mol. Sci. 2013; 14(7): 13213-30.
30. Montalbano M. et al. Biology and function of glypican-3 as a candidate for early cancerous transformation of hepatocytes in hepatocellular carcinoma (Review). Oncol. Rep. 2017; 37(3): 1291-300.
31. Kang J.M. et al. KIAA1324 suppresses gastric cancer progression by inhibiting the oncoprotein GRP78. Cancer Res. 2015; 75(15): 3087-97.
32. Bürkle B. et al. Spread of endometriosis to pelvic sentinel lymph nodes: gene expression analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013; 169(2): 370-5.
33. Davies L. et al. P53 apoptosis mediator PERP: localization, function and caspase activation in uveal melanoma. J. Cell. Mol. Med. 2009; 13(8b):1995-2007.
34. Constable J.R.L. et al. Amisyn regulates exocytosis and fusion pore stability by both syntaxin-dependent and syntaxin-independent mechanisms. J. Biol. Chem. 2005; 280(36): 31615-23.
35. Lenka G. et al. Identification of methylation-driven, differentially expressed STXBP6 as a novel biomarker in lung adenocarcinoma. Sci. Rep. 2017;7: 42573.
36. Qiu H.-L. et al. High expression of KIF14 is associated with poor prognosis in patients with epithelial ovarian cancer. Eur. Rev. Med. Pharmacol. Sci. 2017; 21(2): 239-45.
37. Singel S.M. et al. KIF14 promotes AKT phosphorylation and contributes to chemoresistance in triple-negative breast cancer. Neoplasia. 2014; 16(3): 247-56. e2.
38. Heo J.-I., Cho J.H., Kim J.-R. HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013; 68(8): 914-25.
39. Fu H.-L., Shao L. Silencing of NUF2 inhibits proliferation of human osteosarcoma Saos-2 cells. Eur. Rev. Med. Pharmacol. Sci. 2016; 20(6): 1071-9.
40. Katkoori V.R. et al. Prognostic significance and gene expression profiles of p53 mutations in microsatellite-stable stage III colorectal adenocarcinomas. PLoS One. 2012; 7(1): e30020.
41. Li S. et al. SHP2 positively regulates TGFβ1-induced epithelial-mesenchymal transition modulated by its novel interacting protein Hook1. J. Biol. Chem. 2014; 289(49): 34152-60.
42. Maldonado-Báez L. et al. Microtubule-dependent endosomal sorting of clathrin-independent cargo by Hook1. J. Cell Biol. 2013; 201(2): 233-47.
43. Zhang W. et al. Overexpression of myosin is associated with the development of uterine myoma. J. Obstet. Gynaecol. Res. 2014; 40(9): 2051-7.
44. Liu Y. et al. Loss of N -acetylgalactosaminyltransferase-4 orchestrates oncogenic microRNA-9 in hepatocellular carcinoma. J. Biol. Chem. 2017; 292(8): 3186-200.
45. Iozzo R.V., ed. Proteoglycans: structure, biology and molecular interactions. New York: Marcel Dekker Inc.; 2000.
46. Berardo P.T. et al. Composition of sulfated glycosaminoglycans and immunodistribution of chondroitin sulfate in deeply infiltrating endometriosis affecting the rectosigmoid. Micron. 2009; 40(5-6): 639-45.
47. Monsivais D. et al. Activated glucocorticoid and eicosanoid pathways in endometriosis. Fertil. Steril. 2012; 98(1): 117-25.
48. Bao Y. et al. Tumor suppressor PRSS8 targets Sphk1/S1P/Stat3/Akt signaling in colorectal cancer. Oncotarget. 2016; 7(18): 26780-92.
49. Wang J. et al. VEGF expression is augmented by hypoxia‑induced PGIS in human fibroblasts. Int. J. Oncol. 2013; 43(3): 746-54.
50. Murray M. CYP2J2 – regulation, function and polymorphism. Drug Metab. Rev. 2016; 48(3): 351-68.
51. Edqvist P.-H.D. et al. Loss of ASRGL1 expression is an independent biomarker for disease-specific survival in endometrioid endometrial carcinoma. Gynecol. Oncol. 2015; 137(3): 529-37.
52. Adeva-Andany M.M. et al. Liver glucose metabolism in humans. Biosci. Rep. 2016; 36(6).
53. Marttila-Ichihara F. et al. Amine oxidase activity regulates the development of pulmonary fibrosis. FASEB J. 2017; Mar 1.
54. Alfarouk K.O. Tumor metabolism, cancer cell transporters, and microenvironmental resistance. J. Enzyme Inhib. Med. Chem. 2016; 31(6): 859-66.
55. Xu Y. Effect of estrogen sulfation by SULT1E1 and PAPSS on the development of estrogen-dependent cancers. Cancer Sci. 2012; 103(6): 1000-9.
56. Gupta A. et al. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin A deregulation and a potential role in cell-cell adhesion. PLoS One. 2015; 10(3): e0120091.
57. Zhao Q. et al. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma. Clin. Transl. Oncol. 2015; 17(8): 620-31.
58. Calvo F. et al. RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nat. Cell Biol. 2011; 13(7): 819-26.
59. Byrne J.A. et al. Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene? Tumor Biol. 2014; 35(8):7369-82.
60. Meunier D. et al. Expression analysis of proline rich 15 (Prr15) in mouse and human gastrointestinal tumors. Mol. Carcinog. 2011; 50(1): 8-15.
61. Rowther F.B. et al. Cyclic nucleotide phosphodiesterase-1C ( PDE1C ) drives cell proliferation, migration and invasion in glioblastoma multiforme cells in vitro. Mol. Carcinog. 2016; 55(3): 268-79.
62. Han B., Poppinga W.J., Schmidt M. Scaffolding during the cell cycle by A-kinase anchoring proteins. Pflügers Arch. - Eur. J. Physiol. 2015;467(12): 2401-11.
63. Guimarães-Young A. et al. Conditional deletion of Sox17 reveals complex effects on uterine adenogenesis and function. Dev. Biol. 2016;414(2): 219-27.
64. Mahajan N. Signatures of prostate-derived Ets factor (PDEF) in cancer. Tumor Biol. 2016; 37(11): 14335-40.
65. McManus M. et al. Hes4: A potential prognostic biomarker for newly diagnosed patients with high-grade osteosarcoma. Pediatr. Blood Cancer. 2017; 64(5).
66. Ounzain S. et al. Proliferation-associated POU4F2/Brn-3b transcription factor expression is regulated by oestrogen through ERα and growth factors via MAPK pathway. Breast Cancer Res. 2011; 13(1): R5.
67. Cho I.-T. et al. Aristaless related homeobox (ARX) interacts with β-Catenin, BCL9, and P300 to regulate canonical wnt signaling. PLoS One. 2017; 12(1): e0170282.
68. Du H., Taylor H.S. The role of Hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harb. Perspect. Med. 2016; 6(1): a023002.
69. Szczepanska M. et al. Expression of HOXA11 in the mid-luteal endometrium from women with endometriosis-associated infertility. Reprod. Biol. Endocrinol. 2012; 10(1): 1.
70. Douville J.M. et al. Mechanisms of MEOX1 and MEOX2 regulation of the cyclin dependent kinase inhibitors p21CIP1/WAF1 and p16INK4a in vascular endothelial cells. PLoS One. 2011; 6(12): e29099.
71. Ao X. et al. Sumoylation of TCF21 downregulates the transcriptional activity of estrogen receptor-alpha. Oncotarget. 2016; 7(18): 26220-34.
72. Warzecha C.C. et al. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell. 2009; 33(5): 591-601.
73. Franasiak J.M. et al. Endometrial CXCL13 expression is cycle regulated in humans and aberrantly expressed in humans and Rhesus macaques with endometriosis. Reprod. Sci. 2015; 22(4): 442-51.
74. Li M.-Q. et al. Chemokine CCL2 enhances survival and invasiveness of endometrial stromal cells in an autocrine manner by activating Akt and MAPK/Erk1/2 signal pathway. Fertil. Steril. 2012; 97(4): 919-29. e1.
75. Taylor K.L. et al. Identification of interferon-β-stimulated genes that inhibit angiogenesis in vitro. J. Interf. Cytokine Res. 2008; 28(12): 733-40.
76. Wend P. et al. Wnt signaling in stem and cancer stem cells. Semin. Cell Dev. Biol. 2010; 21(8): 855-63.
77. Li J. et al. Endometriotic mesenchymal stem cells significantly promote fibrogenesis in ovarian endometrioma through the Wnt/β-catenin pathway by paracrine production of TGF-β1 and Wnt1. Hum. Reprod. 2016; 31(6): 1224-35.
Поступила 07.02.2017
Принята в печать 17.02.2017
Об авторах / Для корреспонденции
Бобров Михаил Юрьевич, к.х.н., зав. лабораторией молекулярной патофизиологии ФГБУ НЦАГиП им. академика В.И. Кулакова Минздрава России,с.н.с. лаборатории оксилипинов ФГБУН Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова.
Адрес: 117997, Россия, Москва, ул. Академика Опарина, д. 4
Балашов Иван Сергеевич, м.н.с. лаборатории биоинформатики ФГБУ НЦАГиП им. академика В.И. Кулакова Минздрава России.
Адрес: 117997, Россия, Москва, ул. Академика Опарина, д. 4
Боровиков Павел Игоревич, зав. лабораторией биоинформатики ФГБУ НЦАГиП им. академика В.И. Кулакова Минздрава России.
Адрес: 117997, Россия, Москва, ул. Академика Опарина, д. 4
Наумов Владимир Александрович, м.н.с. лаборатории биоинформатики ФГБУ НЦАГиП им. академика В.И. Кулакова Минздрава России.
Адрес: 117997, Россия, Москва, ул. Академика Опарина, д. 4
Альмова Индира Курманбиевна, аспирант хирургического отделения ФГБУ НЦАГиП им. академика В.И. Кулакова Минздрава России.
Адрес: 117997, Россия, Москва, ул. Академика Опарина, д. 4
Хилькевич Елена Григорьевна, д.м.н., ведущий научный сотрудник отделения общей хирургии ФГБУ НЦАГиП им. академика В.И. Кулакова Минздрава России.
Адрес: 117997, Россия, Москва, ул. Академика Опарина, д. 4. Телефон: 8 (495) 438-77-83. E-mail: e_khilkevich@oparina4.ru
Павлович Станислав Владиславович, к.м.н., ученый секретарь ФГБУ НЦАГиП им. академика В.И. Кулакова Минздрава России.
Адрес: 117997, Россия, Москва, ул. Академика Опарина, д. 4. Телефон: 8 (495) 438-18-00. Е-mail: s_pavlovich@oparina4.ru
Филлипова Елена Сергеевна, аспирант гинекологического отделения ФГБУ НЦАГиП им. академика В.И. Кулакова Минздрава России.
Адрес: 117997, Россия, Москва, ул. Академика Опарина, д. 4
Сухих Геннадий Тихонович, академик РАН, д.м.н., профессор, директор ФГБУ ФГБУ НЦАГиП им. академика В.И. Кулакова Минздрава России.
Адрес: 117997, Россия, Москва, ул. Академика Опарина, д. 4. Телефон: 8 (495) 438-18-00. E-mail: g_sukhikh@oparina4.ru
Для цитирования: Бобров М.Ю., Балашов И.С., Филиппова Е.С., Альмова И.К., Хилькевич Е.Г., Павлович С.В., Наумов В.А., Боровиков П.И., Сухих Г.Т. Использование транскриптомных баз данных для анализа патогенетических факторов эндометриоза. Акушерство и гинекология. 2017; 4: 34-44.
http://dx.doi.org/10.18565/aig.2017.4.34-44